
www.manaraa.com

 

Software Architectural Design in Global Software Development: An Empirical Study

Journal Pre-proof

Software Architectural Design in Global Software Development: An
Empirical Study

Outi Sievi-Korte, Ita Richardson, Sarah Beecham

PII: S0164-1212(19)30174-8
DOI: https://doi.org/10.1016/j.jss.2019.110400
Reference: JSS 110400

To appear in: The Journal of Systems & Software

Received date: 12 December 2018
Revised date: 14 August 2019
Accepted date: 18 August 2019

Please cite this article as: Outi Sievi-Korte, Ita Richardson, Sarah Beecham, Software Architectural
Design in Global Software Development: An Empirical Study, The Journal of Systems & Software
(2019), doi: https://doi.org/10.1016/j.jss.2019.110400

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2019.110400
https://doi.org/10.1016/j.jss.2019.110400


www.manaraa.com

Highlights

• A holistic view of architecting in GSD, combining recommendations from

both literature and this empirical study.

• A set of 8 recommendations for how to conduct architectural practices in

Global Software Development.

• A set of 8 challenges that act as warnings to those new to GSD.

• A visualisation of the relationships between the challenges and practices,

and key themes (in UML).

• Quotes from a group of experts in the field, that highlight the problems

other architects might relate to.

1



www.manaraa.com

Software Architectural Design in Global Software
Development: An Empirical Study

Outi Sievi-Kortea, Ita Richardsonb, Sarah Beechamb,∗

aTampere University, Finland
bLero - The Irish Software Research Centre, University of Limerick, Ireland

Abstract

In Global Software Development (GSD), the additional complexity caused by

global distance requires processes to ease collaboration difficulties, reduce com-

munication overhead, and improve control. How development tasks are broken

down, shared and prioritized is key to project success.

While the related literature provides some support for architects involved in

GSD, guidelines are far from complete. This paper presents a GSD Architectural

Practice Framework reflecting the views of software architects, all of whom are

working in a distributed setting. In-depth interviews with architects from seven

different GSD organizations revealed a complex set of challenges and practices.

Designing software for distributed teams requires careful selection of prac-

tices that support understanding and adherence to defined architectural plans

across sites. Teams used Scrum which aided communication, and Continuous In-

tegration which helped solve synchronization issues. However, teams deviated

from the design, causing conflicts. Furthermore, there needs to be a balance

between the self-organizing Scrum team methodology and the need to impose

architectural design decisions across distributed sites.

The research presented provides an enhanced understanding of architectural

practices in companies using distributed development methods. Our GSD Ar-

chitectural Practice Framework gives practitioners a cohesive set of warnings,

∗Corresponding author
Email address: sarah.beecham@lero.ie (Sarah Beecham)

Preprint submitted to Elsevier August 19, 2019



www.manaraa.com

which for the most part, are matched by recommendations.

Keywords: software architecture, global software development, GSD, Scrum,

GSE, empirical study

1. Introduction

Global software development (GSD) in its many forms has become a stan-

dard way of producing software for large companies [1] as well as small [2]. Tasks

are outsourced and/or off-shored [3] for a variety of reasons, such as to reduce

costs and gain access to local markets and resources [4]. No matter how tasks5

are distributed or what kind of processes are followed, there is one common

denominator for all GSD projects that make them more challenging to handle

than collocated projects, and that is ‘global distance’.

Global distance [5] has three dimensions: socio-cultural, temporal and ge-

ographical. Geographical and temporal distance are a natural consequence of10

having development sites far away from each other. Socio-cultural distance can

also cause problems with distributed development, due to issues of trust and

misunderstandings [6].

Global distance thus calls for more effort in terms of inter and intra team

communication, coordination and control [7]. Working communication meth-15

ods need to be in place to overcome the challenges brought about by distance.

Projects need to be especially well-coordinated [8], so that each site is at all

times aware of their tasks and responsibilities and to ensure a common view of

the status and requirements of the project [9, 10].

These GSD challenges can be alleviated by minimizing the need for com-20

munication between sites. This will ease task performance, lead to fewer meet-

ings, fewer emails sent and fewer misunderstandings due to cultural differences.

Herbsleb et al. [11] suggest that careful task allocation is key to achieving

an optimal communication level, minimizing connections between sites. Tasks,

and the connections between them, are derived directly from the dependencies25

within software, which are dictated by the software architecture.

3



www.manaraa.com

Furthermore, Conway’s law [12] states that the software architecture will

end up mirroring the organization’s communication structure, and this has been

validated by many studies over the years [13, 14, 15]. Thus, it would seem that

by creating a modular architecture that follows the organization’s structure and30

available skills may solve a lot of issues with GSD, and the various barriers

imposed by global distances [8].

Software architecture design, however, is a very complicated activity. In

addition to reflecting on the modular structure of the software, architects need

to consider required technologies and the dependencies between them, available35

resources, available budget and schedule, customer requirements and pressure

from the marketing department, and such like. Particularly if there are concerns

spanning multiple layers or various components, the modularity of a software

itself is not straightforward either. For example, if tasks are divided by compo-

nents, how can we handle features that require several components? And vice40

versa - if tasks are divided by features, how can we handle situations where

several teams need the same component for their feature?

The overlapping nature of the two challenging aspects - GSD and software

architecture design - is thus vital to investigate. What kind of practices ex-

ist to handle architecture design in a distributed environment? What are the45

recognized challenges and how are they handled? The importance of this inter-

section has already been noted by Babar and Lescher [16], who raise software

architectural design as a key strategy for success in a GSD project.

A number of published studies highlight a range of architectural issues in a

GSD context, e.g. [17, 18]. However, many of these studies present secondary50

results from synthesising or mapping architectural reviews and architectural

knowledge management issues in GSD, without directly investigating how to

perform software architecture design in a distributed setting. Further, while we

found nine challenges and nine practices for architectural design in our SLR [19],

the nine recommended practices only supported five of the challenges, leaving55

four without support. We found no solutions to challenges related to change

management, quality control and development time task allocation. In this

4



www.manaraa.com

empirical study we aim to resolve these gaps by interviewing practitioners in

the field. Based on what we learned from our SLR [19], we are not expecting to

discover practices that would be novel to the software architecture community60

as such, though, but to carve out a subset of practices shown to be important

in a GSD context.

Taking a qualitative, inductive approach, we discovered yet more challenges

to those observed in the literature, and were able to match known and new chal-

lenges with recommended practices which work in practice. These augmented65

sets of challenges and practices are captured in our GSD Architectural Practice

Framework (Section 5).

This paper is organized as follows: Focusing on software architecting in

GSD, section 2 presents the background. In Section 3 we outline our empirical

research method and in Section 4 we summarize the results from the practitioner70

interviews. Section 5 presents unified practices and guidelines for software ar-

chitecting in GSD - the GSD Architectural Practice Framework. In Section 6

we discuss our results and consider threats to validity. Finally, in Section 7, we

summarize our contribution.

2. Background75

2.1. Related Work

Software architecture related studies in a GSD context were reviewed by

Mishra and Mishra [20] who viewed architecting in terms of either knowledge

management (see, e.g., [21, 22, 23, 24]) or process and quality (see, e.g., [25, 26]).

Additionally, there are several studies on performing software architecture re-80

views and evaluations in the context of GSD. Architecture reviews are an impor-

tant part of quality and requirements management, as through them it can be

verified that the architecture fulfills both functional and non-functional require-

ments. Such reviews are traditionally held in workshops and other face-to-face

meetings, which are difficult to arrange in GSD projects. Ali Babar investi-85

gated the use and efficiency of tools to perform this task [27, 28]. Evaluation

5



www.manaraa.com

of software architecture decisions, in turn, has been studied by Che and Perry

[29].

Where architectural issues have been addressed in relation to task alloca-

tion and coordination of GSD projects, Conway’s law features widely (see, e.g.,90

[30, 31, 32, 33]). Herbsleb and Grinter [34], when discussing GSD, explicitly

recommend following Conway’s law: ”Attend to Conway’s Law: Have a good,

modular design and use it as the basis for assigning work to different sites. The

more cleanly separated the modules, the more likely the organization can suc-

cessfully develop them at different sites.” From the architectural viewpoint, the95

separation of modules has been identified as key for independent development

work already as far back as the 1970s by Parnas [35].

There have been several systematic literature reviews in the area of GSD in

general, as revealed by the tertiary study by Verner et al. [36]. Based on this

study, it can clearly be seen that organizational factors, software engineering,100

the software development process, and software project management issues are

the most studied areas in GSD. Notably, from the listed 24 SLR studies, only one

involving software architecture design is listed. This is a review concentrating

on architectural knowledge management (AKM) issues by Ali et al. [17], where

they captured key concepts of AKM in GSD, to include architecture knowledge105

coordination practices and the most crucial challenges. Based on a meta-analysis

of the literature, they presented a meta-model for AKM in a GSD environment.

Several practical design related issues were found, but the focus of the study

is knowledge management, rather than the more technical process of designing

the software architecture, which is the focus of our research. What the meta-110

analysis does reflect is a clear delineation between architectural management in

a co-located setting compared to a distributed development setting.

Besides the study of Ali et al. [17], several studies consider software construc-

tion and configuration [18], but they take a process viewpoint. This strongly

suggests that there is a gap in architecture design related research within GSD.115

This mismatch between industry needs and research conducted was further iden-

tified in an evaluation of 10 years of research and industry collaboration in

6



www.manaraa.com

Global Software Engineering [37]. Christof Ebert and colleagues listed Archi-

tecture and Design as the least researched area with only 6 out of 260 papers

covering the topic over 10 years.120

2.2. Concern Framework for Architecting in Global Software Development - An

Overview

In 2018 we conducted a systematic literature review (SLR) on software ar-

chitecting challenges and practices in GSD [19]. The SLR synthesis enabled us

to construct a conceptual model, the Concern Framework for Architecting in125

Global Software Development. From hereon we will refer to this as the “Concern

Framework”. The Concern Framework is presented in Figure 1, where the chal-

lenges and practices are grouped under themes. Relationships between themes

are also shown. Themes (concepts) are presented as classes; practices and chal-

lenges are given (in condensed form) as class members (coded with SLR-P1 –130

SLR-P9 for practices and SLR-C1 – SLR-C9 for challenges). We use the directed

labeled association to mark the cases where the concepts have indisputable re-

lationships. We use the directed dependency notation where the relationship

between concepts is clear but the affect one action has on another will be context

specific and vary from case to case, and project to project. Finally, inheritance135

is used to denote a special relationship between themes and directly derived sub-

themes. Additionally, two core concepts of architecting (Design Decisions and

Project Management) are notated with stereotypes to distinguish under which

core concept the theme falls. Overlapping concepts across classes are marked

with a special stereotype “Design Decisions and Project Management”.140

As shown in Figure 1, practices and challenges are related to the follow-

ing themes: Organization (Structure and Resources), Ways of Working (AKM,

Change Management and Quality Management), Design Practices, Modular- ity

and Task Allocation. While most challenges have corresponding practices, there

are no practices for Change Management, Quality Management and Task Allo-145

cation. As these themes contain tough challenges that need to be addressed, by

interviewing practitioners, we aim to (a) fill these gaps by identifying how these

7



www.manaraa.com

dictates protocols for

induce

can be calculated
as

determines

determines

implement

is reponsible for

has

includes determining can be affected by

<<Design decisions and
Project management>>

Role

<<Design decisions and
Project management>>

Architect

<<Design decisions and
Project management>>

Design Process

<<Project management>>

Project Management
<<Design decisions and Project

management>>
Ways of Working

<<Design decisions>>

Design Decisions

Difficulties with keeping architecture
understandable (SLR-C2)

Use different diagrams (SLR-P3)
Apply analysis methods (SLR-P2)

<<Design decisions>>

Design Practices

Apply commonly
acknowledged practices
and guidelines (SLR-P7)

Incorrectly  applied or
insufficiently defined
practices (SLR-C7)

<<Project management>>

Organization

<<Project management>>

Structure

Ensure compliance to
org. structure in design
(SLR-P1)

Inability to match org.
structure to design
(SLR-C1)

<<Project management>>

Resources

<< Project management>>
Architectural
Knowledge

Management

Use a specific team of
architects to distribute
knowledge (SLR-P6)

Lack of awareness
between distributed
teams (SLR-C3)

<<Design decisions and
Project management>>

Quality
Management

Insufficient quality
assurance (SLR-C4)

<<Design decisions>>
Change

Management

Inability to maintain a
stable architecture
(SLR-C5)
Lack of compliance
(SLR-C6)

<<Design decisions and
Project management>>

Task Allocation

Issues with work items
spanning across sites
(SLR-C9)

<<Design decisions>>

Modularity

Well-defined
interfaces (SLR-P8)

Difficulties identifying
dependencies (SLR-C8)

<<Design decisions>>

Coupling

Ensure knowledge of
architectural artefacts
(SLR-P4)
Establish a single
repository for arch.
artefacts (SLR-P5)

Consider available
resources (SLR-P9) affects

[Conway's law: organization and
architecture mirror each other.]

Design-driven task allocation may lead to
restructuring the organization (teams), while
organization-driven task allocation may
affect design decisions

C1...Cn: Challenges (issues)

<<core concept>>
Theme name

: Strong relationship between
themes

: Relationship depends on
organization

: Theme with core concept
under which it belongs

P1...Pn: Practices (recommended)Key:

: Inheritance - subtheme
derived from higher-level
theme

Figure 1: Concern Framework Model for Architecting in GSD [19]

challenges are dealt with in practice (b) enhance previously-identified practices

and (c) identify challenges not previously identified in the literature.

The empirical study presented in this paper sets out to strengthen our find-150

ings and find answers to the following Research Questions:

RQ1: What challenges do practitioners face when designing software architec-

ture in GSD projects?

RQ2: What practices do software architects use to accommodate the distributed

nature of development work?155

8



www.manaraa.com

3. Research Method

This section presents an overview of our qualitative research method, to

include sampling of practitioners in architectural design (we call ’interviewees’),

qualitative data collection and analysis methods, and validation. A detailed

description of our study design is available online [38].160

3.1. Research setting

To answer our research questions, we performed semi-structured interviews

with 13 representative architects from seven different global companies. All

representatives participated voluntarily. The interviews lasted between 1 and

2.5 hours, and were performed by the first author, who recorded the interviews165

and wrote notes. In this purposive sample, all interviewees were selected due to

their experience of working with software architecure1 in distributed software

development projects. Some had additional experience including project leader-

ship and management. Interviewee and company backgrounds are summarized

in Tables 1 and 2. Companies are coded with letters A-G. As shown, in each of170

companies A, B, C and F we interviewed one individual, while in companies D,

E and G we interviewed three individuals. In companies D and E the interviews

were performed as a group interview, while for company G all three practition-

ers were interviewed separately. In companies D and E the interviewees worked

in very similar projects or roles, while in company G the interviewees had much175

more varying roles, though all related to architecting.

3.2. Questions

The Concern Framework [19] gave us a starting point for our interviews.

When constructing our questions, we ensured that the topics which were poorly

addressed in the literature were covered, eliciting practical examples of their180

architectural practices from the interviewees.

1Those working with architectural issues are those involved in making design decisions,
prioritizing requirements and development work accordingly, and contributing to architectural
artefacts, such as documentation

9



www.manaraa.com

T
a
b

le
1
:

In
te

rv
ie

w
ee

s’
b

a
ck

g
ro

u
n

d
s

A
B

C
D

E
F

G

N
u

m
b

e
r

o
f

p
a
r
ti

c
i-

p
a
n
ts

1
1

1
3

3
1

3

F
ie

ld
o
f

c
o
m

p
a
n
y

P
o
w

er
/

E
le

ct
ri

ca
l

a
u

to
m

a
ti

o
n

S
o
ft

w
a
re

D
e-

v
el

o
p

m
en

t
IT

C
o
n

su
lt

-
in

g
/

S
o
ft

-
w

a
re

D
ev

el
-

o
p

m
en

t

S
o
ft

w
a
re

d
e-

si
g
n

S
o
ft

w
a
re

d
e-

v
el

o
p

m
en

t
M

in
in

g
/

m
a
-

ch
in

er
y

a
n

d
in

fo
rm

a
ti

o
n

sy
st

em
s

T
el

ec
o
m

-
m

u
n

ic
a
ti

o
n

s

S
iz

e
o
f

c
o
m

p
a
n
y

(e
m

p
lo

y
-

e
e
s)

5
0
0

0
0
0

3
0
+

1
0
0

5
0
-6

0
1
0
0
0

3
5

0
0
0

1
0
0

0
0
0

S
iz

e
o
f

IT
/
S

o
ft

w
a
r
e

D
e
v
e
l-

o
p

m
e
n
t

se
c
ti

o
n

M
o
st

a
ct

iv
-

it
ie

s
in

v
o
lv

e
sw

2
0
+

3
0

9
0
%

7
0
%

1
0
0

3
0
%

N
u

m
b

e
r

o
f

si
te

s
p

e
r

p
r
o
je

c
t

w
h

e
r
e

in
te

r
v
ie

-
w

e
e

h
a
s

w
o
r
k
e
d

3
2

3
4

3
-5

2
-5

3
-4

,
2
-5

,
1
2

N
u

m
b

e
r

o
f

c
o
u

n
tr

ie
s

4
2

4
4

3
-5

5
2
-3

,
2
-5

,
9

C
o
u

n
tr

ie
s

w
h

e
r
e

p
r
o
je

c
ts

h
a
v
e

r
e
si

d
e
d

U
S

A
,

IT
,

IN
F

I,
P

K
N

L
,
H

R
,
F

R
,

S
A

F
I,

V
N

,
D

E
,

J
P

IE
,

F
I,

IN
,

P
L

,
R

O
,

A
R

IN
,

F
I,

S
E

,
N

L
,

U
S

A
F

I,
C

N
,

IN
,

P
H

,
R

O
,

P
L

,
D

E
,

U
S

A
,

F
R

,
P

T

10



www.manaraa.com

We summarise the various steps here in four phases:

Phase 1: Background The purpose, ethical considerations and background

associated with the study is described to the participant. Key terms are de-

fined, such as “GSD” and “Software architecture design” to ensure a common185

understanding.

Phase 2: Demographics We collect personal information such as experience

and role, and also ask about the organization size and countries involved in the

projects on which the participant is working (see Table 1).

Phase 3: Exploratory Questions We ask open questions on principles, prac-190

tices and guidelines that the interviewees has followed or found useful (or not)

in their work with GSD in general and in software architecture design.

Phase 4: Focused Questions Here we ask specific questions on themes we

found in the Concern Framework, repeating known challenges and practices,

and probing for answers to those challenges without a matching set of practices.195

For the full set of our semi-structured questions, see our interview protocol [38].

3.3. Analysis

In order to derive themes from our qualitative data, we applied a form of

thematic analysis as described in [39, 40, 41] accompanied by memoing [42, 43].

The thematic analysis involved an abstraction of codes from the transcripts200

(termed ’codes’), which in the cases of “practice” and “challenge” were pre-

determined, but other codes were generated inductively from the material.

The analysis and validation process is outlined in Figure 2 and proceeded as

follows:

1. Code each quote.205

2. Create a memo item for each quote.

3. Extract concern.

• Select practice and challenge coded quotes (subset of item 1.)

• Reword long quotes into a shorter format

• Synthesize practice/challenge codes to create a theme210

11



www.manaraa.com

• Re-iterate synthesis process

4. Validate by conducting an inter-rater reliability test of each code and

theme, as components of the framework (involving 3 researchers).

5. Revise framework based on validation results (and repeat inter-rater test

to check assumptions)215

6. Augment the Concern Framework with concerns found in this study

7. Derive GAP Framework The new GAP framework comprises prac-

tices, challenges, concerns, and relationships, merged with our Concern

Framework (see Fig 2).

Coding

Memoing

Extracting
concerns

35 codes

18 themes

26 practices

26 challenges

Validation Revisions

17 practice
concerns
22 challenge
concerns

Augment
the Concern
Framework

Derive
the GAP 
Framework

Figure 2: Analysis and validation process leading to development of new GSD Architectural
Practice (GAP) Framework

A more detailed description of steps 1–5 are described in [38]. Findings220

stemming directly from our empirical study are discussed in Section 4.

Combining our new empirical findings with the previously derived Concern

Framework creates a more complete view of architecting in GSD, which we

present as the GSD Architectural Practice Framework (hereafter called the GAP

Framework). We present the GAP Framework in detail in Section 5.225

4. Architecting in Distributed Software Development Projects

4.1. General Views on GSD and Software Development Practices

We began our interviews by enquiring about how distributed development

is carried out in the companies. To understand the operating environment

dictating architecting practices, we asked a number of background questions,230

the answers to which are summarised in Table 2.

12



www.manaraa.com

T
a
b

le
2
:

C
o
n
te

x
t

fo
r

D
is

tr
ib

u
te

d
A

rc
h

it
ec

ti
n

g

A
B

C
D

E
F

G

N
u

m
b

e
r

o
f

p
a
r
ti

c
ip

a
n
ts

1
1

1
3

3
1

3

C
o
m

m
o
n

la
n

-
g
u

a
g
e

N
o

sh
a
re

d
la

n
-

g
u

a
g
e

E
n

g
li

sh
u

se
d

E
n

g
li

sh
u

se
d

E
n

g
li

sh
m

a
in

ly
u

se
d

,
p

ro
b

le
m

s
w

it
h

A
si

a
n

co
u

n
tr

ie
s

E
n

g
li

sh
u

se
d

E
n

g
li

sh
u

se
d

E
n

g
li

sh
u

se
d

E
ff

e
c
t

o
f

ti
m

e
d

iff
e
r
e
n

c
e

Is
su

es
fo

u
n

d
,

re
q
u

ir
es

g
o
o
d

m
a
n

a
g
em

en
t

N
o
t

si
g
n

ifi
ca

n
t,

4
-5

h
o
u

rs
T

im
e

d
iff

er
en

ce
to

U
S

A
re

q
u

ir
es

m
a
n

a
g
em

en
t

P
ro

b
le

m
o
f

v
a
ry

in
g

le
v
el

b
et

w
ee

n
si

te
s

S
o
m

e
p

ro
b

le
m

s
a
re

ex
p

er
ie

n
ce

d
3

h
o
u

rs
ti

m
e

d
iff

er
en

ce
,

n
o
t

a
p

ro
b

le
m

S
er

io
u

s
p

ro
b

-
le

m
s

/
N

o
t

a
b

ig
p

ro
b

le
m

/
D

o
es

h
a
v
e

a
n

eff
ec

t,
re

q
u

ir
es

fl
ex

ib
il

it
y

R
e
a
so

n
s

fo
r

G
S

D
C

o
st

E
x
p

er
ti

se
,

co
st

T
a
le

n
t,

co
st

C
o
m

p
a
n
y

id
eo

l-
o
g
y

C
o
st

,
a
cc

es
s

to
p

eo
p

le
C

o
st

C
o
st

a
n

d
fi

el
d

o
f

b
u

si
n

es
s

U
se

d
so

ft
w

a
r
e

p
r
o
c
e
ss

A
g
il

e
m

et
h

o
d

s
S

cr
u

m
-l

ik
e

S
cr

u
m

S
cr

u
m

d
er

iv
a
-

ti
v
e

S
cr

u
m

S
cr

u
m

-l
ik

e
S

cr
u

m
-l

ik
e

Is
d

is
tr

ib
u

ti
o
n

c
o
n

si
d

e
r
e
d

in
th

e
p

r
o
c
e
ss

?

Y
es

,
su

b
-a

re
a
s

p
er

si
te

Y
es

,
in

m
a
in

te
-

n
a
n

ce
re

sp
o
n

si
-

b
il

it
y

a
n

d
co

m
-

m
u

n
ic

a
ti

o
n

Y
es

in
m

ee
ti

n
g

a
rr

a
n

g
em

en
ts

,
o
th

er
w

is
e

n
o

Y
es

,
b

a
si

c
a
s-

su
m

p
ti

o
n

Y
es

,
re

so
u

rc
es

a
re

co
n

si
d

er
ed

P
a
rt

ia
ll

y
y
es

Y
es

in
d

ev
el

o
p

-
m

en
t

ta
sk

s
/

co
m

m
u

n
ic

a
ti

o
n

P
e
r
c
e
iv

e
d

e
f-

fo
r
t

fo
r

a
r
c
h

i-
te

c
ti

n
g

S
ev

er
a
l

y
ea

rs
2
5
%

o
f

d
ev

el
o
p

-
m

en
t

ti
m

e
1
5
-2

0
%

o
f

d
ev

el
-

o
p

m
en

t
ti

m
e

1
fu

ll
-t

im
e

a
rc

h
i-

te
ct

F
u

ll
-t

im
e

a
rc

h
i-

te
ct

te
a
m

A
lo

t
o
f

eff
o
rt

,
in

te
rn

a
l

co
m

p
e-

ti
ti

o
n

N
o
t

en
o
u

g
h

ti
m

e,
o
r

ti
m

e
sp

en
t

b
u

t
a
ll

o
-

ca
te

d
to

w
ro

n
g

th
in

g
s

B
ig

g
e
st

c
h

a
l-

le
n

g
e

in
G

S
D

a
H

o
w

to
es

ta
b

li
sh

tr
u

st
w

it
h

in
a
n

d
b

et
w

ee
n

te
a
m

s

C
O

M
M

,
C

U
L
T

T
IM

E
C

O
M

M
,

C
U

L
T

,
in

st
a
b

il
it

y
C

O
M

M
,

T
IM

E
,

C
U

L
T

,
d

ea
li

n
g

w
it

h
h

id
d

en
o
rg

a
n

iz
a
ti

o
n

a
n

d
v
a
ry

in
g

st
ru

ct
u

re
s

T
IM

E
,

C
O

M
M

C
U

L
T

,
C

O
M

M
,

H
o
w

to
h

a
n

d
le

lo
st

in
fo

rm
a
ti

o
n

a
n

d
o
rg

a
n

iz
e

jo
in

t
m

ee
ti

n
g
s

a
C

O
M

M
:

H
o
w

to
h

a
n

d
le

co
m

m
u

n
ic

a
ti

o
n

,
C

U
L
T

:
H

o
w

to
h

a
n

d
le

cu
lt

u
ra

l
d

iff
er

en
ce

s,
T

IM
E

:
H

o
w

to
h

a
n

d
le

d
iff

er
en

t
ti

m
e

zo
n

es

13



www.manaraa.com

We explored experiences based on different temporal distances between sites.

In company B the time difference of 4-5 hours was not considered to be a

problem. However, with company E, all interviewees agreed that there were

problems, even though time difference between some sites was less (2 hours) or235

about the same (5 hours), as in company B. Most interestingly, in company G

different interviewees had varying views on the effect of time differences. While

G1 did not work with more or different sites than G2, he had experienced

severe difficulties, while G2 did not consider any real problems. Further, G3

was working with the most number of sites, with expectedly the biggest time240

zone challenges, and the problem did not seem significant.

As expected, the dominant reason for distributing development is to save

costs. However, the second biggest reason for the distribution is access to re-

sources. In some cases this appeared to be acquisition of resources at a specific

location; in others the companies had acquired a smaller local company to gain245

access to a required resource.

We note that all the companies are using, or at least are attempting to use,

some variant of Scrum. The level of how strictly Scrum is applied varies, and in

some cases there were distinct elements of the waterfall process still apparent.

Consideration of software development distribution varies significantly among250

organizations. In some cases there are clear implications that the architecture

design process makes allowances for distribution of development and mainte-

nance, but in other cases only practical arrangements with regard to communi-

cation and meetings are considered.

4.2. Role of Architect in a Distributed Environment255

We proceeded by asking about the role of an architect in the companies

and how architecture design fits into the development processes. The answers

are presented in Table 3. Architecting work is handled quite differently across

the participating companies. Several companies have a practice where a multi-

site architect team or even several teams lead the work, with the architect260

integrated into development teams to involve them in the daily work and to

14



www.manaraa.com

ensure architectural knowledge distribution to all developers. However, the

other extreme is that there is one chief architect or a CTO having the final say

on decisions. We observe that cases with one chief architect are quite different:

Company D is extremely distributed (4 main office sites and a number of experts265

around the world), while companies B and F have the least number of sites (only

2 active sites currently) and the lowest number of different teams involved in

development.

There is near consensus relating to the responsibilities of an architect - so

the role appears to be the same regardless of company size and field of busi-270

ness. The software architect is expected to be the person who combines different

stakeholders’ concerns and manages design decisions at large. However, quite

radical differences are found particularly within company G, where G1 consid-

ers that the architect’s responsibility is to maintain interface documentation,

while G3 views the architect as a negotiator. This would imply that in large275

organizations where there might be architecting at various levels, for example,

feature, component and product line, the experience of an architect’s role and

responsibilities is more context specific.

Two main practices emerged on how architecture design fits with the (vary-

ing) Agile methodologies followed. One option is to allow the architecture design280

to evolve as development progresses. In this case, architectural tasks are con-

sidered in a similar way to other development tasks in the Scrum framework.

The other option is to have a “sprint zero”, where the main portion of the ar-

chitecture is designed before development actually starts. This is often required

by the customer.285

4.3. Software Architecture Design Challenges and Practices in The Field

We asked interviewees what they considered to be the biggest challenge and

the most important practices when conducting software architecting in global

development projects. The following sections summarise the responses.

15



www.manaraa.com

T
a
b

le
3
:

A
rc

h
it

ec
t’

s
ro

le

A
B

C
D

E
F

G

N
u

m
b

e
r

o
f

p
a
r
ti

c
ip

a
n
ts

1
1

1
3

3
1

3

W
h

o
is

in
c
h

a
r
g
e

o
f

d
e
c
is

io
n

s

A
rc

h
it

ec
t

te
a
m

.
M

em
b

er
s

fr
o
m

a
ll

si
te

s.

C
T

O
,

w
h

o
le

a
d

s
a

d
ec

en
tr

a
li

ze
d

te
a
m

o
f

a
rc

h
i-

te
ct

s,
ea

ch
in

ch
a
rg

e
o
f

o
n

e
su

b
-a

re
a
.

T
w

o
ce

n
tr

a
l

a
rc

h
it

ec
ts

in
ch

a
rg

e
o
f

w
h

o
le

p
ro

d
u

ct
,

o
n

e
a
rc

h
it

ec
t

re
p

re
-

se
n
ta

ti
v
e

in
ea

ch
d

ev
el

o
p

er
te

a
m

.

O
n

e
C

h
ie

f
a
r-

ch
it

ec
t

fo
r

ea
ch

p
ro

je
ct

M
u

lt
i-

si
te

a
rc

h
i-

te
ct

te
a
m

s,
a
n

d
in

d
iv

id
u

a
l

a
rc

h
i-

te
ct

s
fr

o
m

th
e

te
a
m

s.
O

n
e

te
a
m

p
er

su
b

-
a
re

a
.

O
n

e
ch

ie
f

a
rc

h
i-

te
ct

A
rc

h
it

ec
t

te
a
m

,
o
n

e
re

p
re

se
n
ta

-
ti

v
e

fr
o
m

ea
ch

si
te

,
d

iff
er

en
t

le
v
el

a
rc

h
it

ec
ts

,
ch

ie
f

a
rc

h
it

ec
t

fo
r

ea
ch

re
le

a
se

.

W
h

a
t

a
r
e

th
e

r
e
sp

o
n

si
b

il
-

it
ie

s
o
f

a
n

a
r
c
h

it
e
c
t

N
/
A

R
es

p
o
n

si
b

le
fo

r
th

e
d

es
ig

n
o
f

th
ei

r
o
w

n
su

b
-

a
re

a
s,

fi
n

d
in

g
o
u

t
w

h
a
t

sh
o
u

ld
b

e
d

o
n

e,
m

a
k
in

g
a

p
re

li
m

in
a
ry

p
la

n
o
n

h
o
w

sh
o
u

ld
b

e
d

o
n

e.

A
rc

h
it

ec
tu

ra
l

d
ec

is
io

n
s,

w
ei

g
h
-

in
g

th
e

b
a
la

n
ce

o
f

tr
a
d

e-
o
ff

s,
d

iff
er

en
t

st
a
k
e-

h
o
ld

er
re

q
u

ir
e-

m
en

ts
.

S
a
fe

-
g
u

a
rd

in
g

th
e

im
p

le
m

en
ta

ti
o
n

,
co

m
m

u
n

ic
a
ti

o
n

.

C
h

ie
f

a
rc

h
it

ec
t

is
re

sp
o
n

si
b

le
fo

r
th

e
b

ig
p

ic
tu

re

L
in

k
a
g
e

b
e-

tw
ee

n
co

m
p
a
n
y

g
o
a
ls

a
n

d
h

o
w

so
ft

w
a
re

is
d

ev
el

o
p

ed
.

/
D

o
in

g
re

se
a
rc

h
o
n

o
p

ti
o
n

s.
E

s-
ti

m
a
ti

n
g

ri
sk

s.
R

ev
er

sa
b
il

it
y

C
h

o
p

th
e

p
ro

d
-

u
ct

in
to

th
e

ri
g
h
t

k
in

d
o
f

d
iv

is
io

n
s,

cl
ea

r
a
n

d
re

u
sa

b
le

p
a
rt

s.

P
re

p
a
ri

n
g

in
te

r-
fa

ce
d

o
cu

m
en

ts
a
n

d
en

su
ri

n
g

fu
n

ct
io

n
a
li

ty
.

K
ee

p
in

g
p

eo
p

le
in

fo
rm

ed
,

en
-

a
b

le
p

eo
p

le
to

m
a
k
e

th
e

ri
g
h
t

d
ec

is
io

n
s.

H
o
w

is
a
r
c
h

i-
te

c
tu

r
e

d
e
si

g
n

fi
tt

e
d

to
A

g
il

e
p

r
o
c
e
ss

e
s

N
/
A

A
rc

h
it

ec
tu

re
d

es
ig

n
ed

b
ef

o
re

p
ro

je
ct

st
a
rt

s.

T
re

a
te

d
a
s

n
o
rm

a
l

d
ev

el
-

o
p

m
en

t
w

o
rk

,
a
rc

h
it

ec
tu

ra
l

ta
sk

s
a
re

ti
ck

et
s

fo
r

th
e

P
O

to
p

ri
o
ri

ti
ze

a
n

d
d

is
tr

ib
u

te
.

P
ro

je
ct

st
a
rt

ed
w

it
h

a
m

o
n
th

lo
n

g
d

es
ig

n
p

e-
ri

o
d

,
h

ig
h

-l
ev

el
a
rc

h
it

ec
tu

re
a
n

d
p

ro
to

ty
p

e
d

o
n

e.

A
rc

h
it

ec
tu

re
d

el
iv

er
a
b

le
s

fo
r

ea
ch

sp
ri

n
t,

so
m

e
d

es
ig

n
b

ef
o
re

d
ev

el
o
p

-
m

en
t.

P
ro

d
u

ct
is

a
g
il

e,
a
g
il

e
a
r-

ch
it

ec
ti

n
g

u
n

d
er

d
is

cu
ss

io
n

.

P
la

n
is

to
h

a
v
e

a
rc

h
it

ec
tu

re
p

la
n

n
ed

2
-3

sp
ri

n
ts

a
h

ea
d

o
f

ti
m

e.
D

o
es

n
’t

a
lw

a
y
s

h
a
p

p
en

.

D
ra

ft
,

sp
ec

if
y,

re
p

a
ir

.
D

es
ig

n
in

te
rw

o
v
en

in
it

er
a
ti

v
e

w
o
rk

.
S

cr
u

m
n

o
t

o
rg

a
n

iz
a
ti

o
n

-
w

id
e.

H
ig

h
er

le
v
el

a
rc

h
i-

te
ct

u
re

n
o
t

d
es

ig
n

ed
it

er
a
-

ti
v
el

y.

16



www.manaraa.com

4.3.1. Challenges290

Our data synthesis of participants’ responses identified seven recurring themes.

Deviating from processes

Our interviewees brought up very strongly the problem of deviating from

processes. They found that even Agile processes (which were used in some way in

all the interviewed companies) were sometimes too strict for daily development295

work. This may well be a result of conflict caused by an increased need for

coordination in distributed processes, while, when using Agile processes, teams

are intended to be self-organizing. For example, developers in teams feel that

not every small detail needs to go through the defined hoops. This becomes

a problem when developers start to increasingly ignore the defined processes,300

ultimately leading to difficulties in task synchronization and mismatch in code

and design.

This issue was not reported in the literature, but various examples from our

interviewees stress the challenges it brings in practice. Processes are essential in

controlling a distributed project, and deviating from them brings uncertainty,305

distrust, misunderstandings, delays in schedule and sub-quality software.

Handling instability

Our interviewees repeatedly raised the issue of frequent personnel and team

structure changes and how it makes architecture design that much more diffi-

cult. In our SLR, we found instability to be a challenge as well, but from the310

point of view of changes in the architecture - in the literature, a more common

problem was that the architecture was not compliant with the requirements it

was supposed to fulfill as a result of uncontrolled changes to the software design.

Interviewees did not find this to be an issue at all, but rather they struggled

with keeping the architecture aligned with an ever-changing organization and315

also keeping communication channels up-to-date.

Adding to the challenge of keeping the architecture compliant with organi-

zation is the organization’s proneness to instability, which is particularly em-

17



www.manaraa.com

phasized in distributed software development. Instability manifests itself as

changing team structures, changing responsibilities between sites, changes in320

personnel and in roles of existing personnel. Personnel changes easily lead to

poor communication, as relevant communication is not reaching the correct tar-

gets anymore, and key people are missing out on information that they should

be receiving.

Difficulties due to distances325

Communication is well-known to be challenged by distance. Practical work

suffers when communication is delayed, there is insufficient technology for web

meetings, and when there are mismatches in how certain terms are understood

between sites. The latter was highlighted by one our interviewees: ”But of

course, there are misunderstandings all the time. That a software is ready and330

working means such different things in Asia and Finland.”. While communica-

tion difficulties due to distance are already well-recognized in the literature, our

interviews highlighted some less-known issues: having the same software and

hardware versions available and being aware of available human resources and

skills.335

Challenges supporting the Concern Framework

Keeping architecture compliant with organization structure. Soft-

ware architecture following the organization structure resonates with Conway’s

law, although Conway suggested that this natural tendency might not be op-

timal. Perhaps given the distances in GSD, this mirroring is less obvious, and340

needs intervention. This challenge is illustrated with a quote from an intervie-

wee ”Structure, structures as well. Its management structures sometimes, and,

you know, people you are working with, they are working on the same piece of

software or same product, but [..] they are reporting to the different editors”

Understanding architectural decisions. An interviewee discussed con-345

flicting assumptions: ”the geographical distance comes into play in that there are

terribly many things that are not said aloud, that people assume differently in

18



www.manaraa.com

different countries and places, in relation to practices and all that, so those are

difficult to detect. Especially if you don’t meet in person, then they don’t really

come to light.” In GSD, problems in communication and practical work easily350

lead to difficulties in understanding architectural decisions. This is evident in

two ways: people can have conflicting assumptions about the software, or dis-

agree about the choices behind the architecture of the software being developed.

In extreme cases, this lack of transparency means that the problem only comes

to light after the conflict has caused an error.355

Achieving modularity and separation of concerns. The effects of dis-

agreement are identified in another example: “simple things like the separation

of concerns, that you have the UI separately and that we don’t go making any-

thing within the UI that is clearly on the logic side, and these kinds of general

practices. [...]but the problem has been that you have to keep an almost daily360

watch on things, that it feels like they sort of see the issue very differently in

India.”. Here the architect who was interviewed reflects on a situation where

an offshore team had been repeatedly told to conform to a given design and

had kept deviating from it, resulting in sub-optimal software. This kind of

experience shows how arguing over the architecture design can bring about seri-365

ous problems and further emphasize the difficulties on separating concerns and

achieving modularity.

Lacking knowledge management practices. A mismatch between how

one site provides documentation and the kind of documentation another site

expects may result in delays, misunderstandings and even errors in code, as370

mentioned by an interviewee:“What is most certainly an issue, in the matter of

intense debate, its the level of definition that should be provided by architecture.”.

Understanding architectural decisions can be aided by distributing knowledge

on architectural artefacts across sites. However, in GSD, sharing artefacts is

not enough, as issues arise not just from lack of access, but also from a lack375

of knowledge as to what needs to be shared. This issue is most notable in

documentation. Different sites may have very different levels of education, and

are accustomed to different notations and detail given in the documentation.

19



www.manaraa.com

4.3.2. Practices

Our interviewees found the question “What is the most important architect-380

ing practice you apply when engaged in GSD?” quite difficult to answer. Their

initial answers tended towards communication issues and knowledge manage-

ment. When probed and encouraged to dig deeper and think about how to

solve problems, they often came back to the question at the end of the in-

terview. Eventually we were able to elicit ten concrete design practices, four385

recommendations regarding task allocation, and three notes on general prac-

tices.

Consider existing product and its constraints

Software is often built on top of existing software or hardware, which presents

limitations. Open source components and libraries cannot be chosen simply for390

the needs of the new extension but need to be checked for compliance with the

existing product. Further, in order to achieve modular software as a whole,

dependencies within the existing product and between existing and new code

must be considered particularly carefully to aid the distribution of development

work.395

Apply continuous integration.

Utilizing the continuous integration pipeline will aid in showing flaws quicker

and open the codebase for all sites. Many synchronization issues are eased

and low-level quality issues are handled with automated testing. Essentially,

continuous integration was found to solve problems related to one site working400

on a piece of code, and other sites just waiting to receive a completed block to

even begin their own work.

Create product boundaries based on Application Programming Interfaces (APIs).

APIs are a widely-recognized practice, and are a well-specified and widely-

spread way of handling interfaces and boundaries between modules. However,405

our interviewees also emphasized their use in the context of product boundaries.

20



www.manaraa.com

Consider maintenance responsibilities as a driver for task division.

In practice, we found that sub-optimal task division during development time

was well-compensated by a more optimal task allocation during the maintenance

phase. In fact, maintenance is optimally done by the same team who created410

the original code, and maintenance often spans a longer time-period and more

changes than the initial creation. This clearly deviates from recommendations

found in the literature, where maintenance is often not considered at all when

discussing design time activities in this context. Allocating tasks to those who

end up doing the maintenance work can be optimal in the long run, even though,415

during development time, the division would be sub-optimal regarding schedule

or expertise.

Practices supporting the Concern Framework

Determine driving architecture style. Interviewees stated that the driv-

ing architecture style was not always clearly defined, but only assumed, resulting420

in conflicting assumptions. However, the chosen style is a driver for all subse-

quent decisions. Starting architecture design from determining a driving archi-

tecture style is a basic concept. In practice, when people are contributing across

the globe and communication is difficult, a consensus on what the architecture

style is or whether a decision has been made may actually be missing.425

Determine platform to base design on. The chosen platform will limit

subsequent design choices regarding utilized technologies, as compliance must

be considered. Again, while such an action should be done at the very start of

the design process, ambiguities easily exist in a distributed environment. This,

as well as the previous recommendation, quite naturally falls under ”Apply430

common architecting practices” that was listed as a key practice in the Concern

Framework.

Create microservices to separate development items. A distributed

project aims for distributed development items, and microservices were consid-

ered a particularly suitable paradigm. This is quite clearly a specification of435

”determining an architecture style”, and resonates with the recommendation

21



www.manaraa.com

of using the Service-Oriented Architecture approach as found in the Concern

Framework.

Create a proof of concept and Create demonstrations. A demonstra-

tion shows potential problems better than documentation. A proof-of-concept,440

in turn, aids demonstration between sites. These recommendations resonate

with the practice of creating prototypes that is present in the Concern Frame-

work.

Base task division on layers. Interviewees found layers to be the clearest

separation of tasks. This particularly this applies to cases where the layered445

architecture is used.

Task allocation

The following three recommendations all convey the same message - separa-

tion of development tasks between sites - from slightly different viewpoints. This

ideology could be considered to contradict the recommendation of using contin-450

uous integration that opens the codebase for all. All these recommendations are

in line with practices found in the literature, encouraging an architecture-driven

work allocation and retaining tightly coupled items on one site.

Keep development of core product at one site. As key business is

based on the core product, it was considered important to keep quality high by455

not distributing the core development.

Clearly separate responsibilities between different sites. This helps

coordination, control and keeping the design intact.

Avoid leakage of site-specific functionalities between sites. Site-

specific functionalities should be tightly kept at the assigned sites to ensure460

quality.

General views

Finally, there are three general views regarding the architecture design pro-

cess, all strongly supporting the views found in the literature:

• Establish practices to enhance knowledge distribution across sites.465

22



www.manaraa.com

• Have clear roles to aid in governance.

• Align architecture and organization

Interviewees found that engaging with and involving developers in the deci-

sion increased their understanding of architecture and commitment, for example

- “the team participates in the architecture work so that its a way to get the team470

to commit, them taking part in the planning of the architecture.”. They also

found direct benefits from using Agile methods particularly in the distributed

context. For example, daily or weekly Scrums increased communication, which

in turn led to fewer incorrect assumptions. To truly facilitate distributed de-

velopment, having mechanisms in place that enable knowledge distribution is475

a first step, but a necessary second step is to create a working culture where

the need for increased communication between sites is recognized and possibly

enforced. The keyword here is thus, enhancing. One mechanism to accomplish

this is to engage developers from all sites into the architectural design process.

All interviewees confirmed that their teams applied a form of Scrum method-480

ology, where the teams are given a level of autonomy to self-organize. Thus even

architectural work would be the responsibility of the teams. However, intervie-

wees strongly supported having someone external to the teams to make the

architectural decisions in the GSD context, particularly due to dependencies

between sites that teams may not be aware of. Further detailing the architect’s485

role, they advise that architects handle all relevant communication between

different stakeholders. There should be a clearly named person in charge of

managing knowledge distribution, architectural work and prioritization.

Finally, our analysis of the interview data partially supports Conway’s law, as

interviewees highlight how the organizational structure guided the design of the490

software architecture. However, two opposing alignments were observed: (a) in

line with Conway’s law, the organization acts as a driver, and the architecture

design is based on skills, resources and the communication structure in the

organization and (b) - the opposing view, the architecture acts as a driver,

with resources moved and acquired based on the needs of the architecture. One495

23



www.manaraa.com

interviewee when asked, whether the architecture drives the organization or the

organization drives the architecture, stated: ”It’s an evolution”.

5. GSD Architectural Practice (GAP) Framework

This section demonstrates how we take the results presented in the previous

section, and combine them with our Concern Framework (presented in section500

2.2) to create the GAP Framework shown in Fig 3.

dictates protocols for

induce

is reponsible for

may aid

<<Design decisions and
Project management>>

Role

<<Design decisions and
Project management>>

Architect

<<Design decisions and Project
management>>

Design Process

<<Project management>>

Project Management <<Design decisions and Project
management>>

Ways of Working

<<Design decisions>>

Design Practices

<<Design decisions>>

Design Decisions

Apply design practices for GSD
(P2)

<<Project management>>

Organization

<<Project management>>

Resources

<< Design decisions and Project
management>>

Architectural Knowledge
Management

<<Design decisions and
Project management>>

Quality
Management

<<Design decisions and
Project management>>

Change
Management

<<Design decisions and
Project management>>

Task Allocation

<<Design decisions>>

Modularity

affects

Standardize a set of architectural
practices across sites (P5)

Poor knowledge
management between
sites (C2)

Lack of control over
quality (C3)

Problems with design decisions
and dependencies (C5)

Dictates

Determines tasks

Influence

has

Influences

C1...Cn: Challenges (issues)

<<core concept>>
Theme name

: Strong relationship between
themes

: Relationship depends on
organization

: Theme with core concept
under which it belongs

P1...Pn: Practices (recommended)Key:

: Inheritance - subtheme
derived from higher-level
theme; subtheme is part of
higher-level theme

<<Design decisions>>

Coupling

can be calculated through

Mismatch between organization
and architecture (C1)
Align architecture to organization
(P6)

Communicate decisions to
all stakeholders (P1)

Lack of governance and
conformance to processes
(C7)
Implement software
development governance for
GSD (P3)

Insufficiently defined or lack of
conformance to practices (C4)

Issues with distributed
task allocation (C6)
Implement
architecture-based
task allocation (P4)

<<Project management>>

Structure

Difficulties in managing
people and soft issues
(C8)

Use various modeling techniques
(P8)

Do continuous improvement
(P7)

determines

can affect

Figure 3: The GAP Framework

5.1. Conceptual Model

Each challenge is given the ID tag ”C” with a running number, so each chal-

lenge has a unique ID number. Similarly, each practice is given the ID tag ”P”

with a running number, so each practice has a unique ID number. Practices505

24



www.manaraa.com

that are under the same theme as a corresponding challenge are natural solu-

tions to that challenge. However, practices that are associated with challenges

via relationships can also be helpful. The complete mapping of practices to

challenges is given in Table 4 with the interpretation of relationships illustrated

in Figure 4.510

<<Design decisions and
Project management>>

Quality
Management

Lack of control over
quality (C3)

<<Project management>>

Project Management
<<Design decisions and Project

management>>
Ways of Working

Standardize a set of architectural
practices across sites (P5)

Lack of governance and
conformance to processes
(C7)
Implement software
development governance for
GSD (P3)

Insufficiently defined or lack of
conformance to practices (C4)

determines

<<Design decisions and Project
management>>

Design Process

Mismatch between organization
and architecture (C1)
Align architecture to organization
(P6)

Quality Management
”inherits” Practices from

Ways of Working, i.e.,
working practices for Ways of
Working (and by extension – 
practices for Design Process

and Project Management) will
aid also in challenges related

to Quality Management.

C1...Cn: Challenges (issues)

<<core concept>>
Theme name

: Strong relationship between
themes

: Relationship depends on
organization

: Theme with core concept
under which it belongs

P1...Pn: Practices (recommended)Key:

: Inheritance - subtheme
derived from higher-level
theme; subtheme is part of
higher-level theme

: Callout explains relationships
between Practices and
Challenges through
associations

Ways of Working
”inherits” Practices

from Design Process,
i.e., working practices
for Design Process will
aid also in challenges

related to Ways of
Working

Project Management is
associated strongly with Ways

of Working – Project
Management determines the

Ways of Working. Working
practices related to Project

Management will thus aid in
handling challenges related to

Ways of Working

Relation

Figure 4: Illustration of relationships

The evolution from the Concern Framework to the GAP framework is sum-

marized as: New relationships between Project Management and Role (of Ar-

chitect), and Role and Architect were added; Task Allocation was placed as a

sub-theme under Ways of Working; Relationships between Task Allocation and

other concepts were modified; The relationship between Design Practices and515

Design Decisions was modified so that Design Decisions are now part of Design

25



www.manaraa.com

Table 4: Mapping of Practices to Challenges

C1 C2 C3 C4 C5 C6 C7 C8

P1 x

P2 x x x

P3 x x x x

P4 x

P5 x x x

P6 x x

P7 x

P8 x x

Practices; The relationship between Project Management and Ways of Working

was fortified to be a clear association instead of depending on the Organization;

The relationship between Ways of Working and Design Practices now works in

both directions.520

Identification of increased dependencies on the architect’s role and how task

allocation fits into the model was significant in our empirical study. We found

that the role of architect in GSD is dictated by project management practices.

Organizing architecting work to one chief architect, to architects on several levels

or to a team of architects who may be also involved with development, has a525

large impact on what architecting means in each particular case. Depending on

the role, an architect may be involved in practical work regarding architectural

decisions and participate in implementing them, or act more as a mediator

between stakeholders and lower-level architects. Task allocation, in turn, was

found to be part of Ways of Working, defined by Project Management practices.530

Ways of Working (and by extension, Task Allocation), may influence Design

Practices. This depends on the state of evolution of the organization and the

architecture. As in the previous model, Task Allocation influences on Resources

and Design Decisions, and vice versa.

5.2. Tackling Challenges535

Elicited practices and challenges with their related concerns are given in

Tables 5 – 11. The concerns related to each Practice and Challenge are labeled

26



www.manaraa.com

with the corresponding ID, followed by ”co” (as in concern), and a running

number. Additionally, each concern is given a postfix of ”slr” if it was derived

in our SLR or ”emp” if it was a result of the empirical study presented in this540

paper. Challenges are presented via themes found in the conceptual model,

and we will discuss how they can be alleviated via the associated Practices. In

the tables, we present those Practices that are placed under the same thematic

concept as the Challenge(s) in question. Please note, though, that as illustrated

by Figures 3 and 4 and Table 4, that Practices under different thematic concepts545

can also aid in answering Challenges.

5.2.1. Design Process and Considering Quality

We combine Challenges for Design Process and Quality Management, as the

Practice for Design Process is the one most closely linked to Quality Manage-

ment.550

During the Design Process the architect should carefully consider matching

the architecture with organizational structure (C1), as this will significantly aid

in further decisions and particularly task allocation. Because they are working

in a distributed environment, an additional aspect to this challenge, is that orga-

nizations often have an unstable structure. The concerns brought forward by the555

interviewees (C1 co2 emp, C1 co3 emp) are very similar to those already found

in the literature – matching the architecture with the organization structure is

difficult.

The Quality Management related challenge (C3) highlights the need for

proper quality assurance, with new concerns brought to light by practitioners.560

While interviewees mention the importance and benefits of arranging architec-

tural reviews and having good testing coverage in the distributed setting, they

are more difficult to arrange this context (C3 co4 emp). For example, intervie-

wees reported concerns regarding insufficient recording of quality requirements

(C3 co6 emp). Additionally, different sites may have different aptitudes for565

running automated tests (C3 co5 emp). These concerns are also addressed as

part of P6, which raises quality management practices as a separate concern

27



www.manaraa.com

Table 5: Design Process and Quality Management

ID Challenge/PracticeConcerns

C1

Challenge:
Mismatch
between
organizational
structure and
architectural
design and
difficulties in
dealing with
instability

Lack of alignment between architectural decisions
to organization structure and not reflecting archi-
tectural changes to organization (C1 co1 slr)
Challenges brought by misalignment between or-
ganization and architecture (C1 co2 emp)
Challenges brought by personnel changes
(C1 co3 emp)
Difficulties ensuring compliance of modular design
throughout the lifecycle and changes in organiza-
tion (C1 co4 slr)
Inability to retain experts from all domains re-
quired for change implementation (C1 co5 slr)

C3

Challenge:
Lack of control
over software
quality

Delegating design decisions to local team deterio-
rates quality (C3 co1 slr)
Insufficient quality management (C3 co2 slr)
Decentralized data and state management lead to
inferior quality (C3 co3 slr)
Insufficient methods for reviewing architecture de-
sign against quality demands (C3 co4 emp)
Insufficient automation for testing, a lot of manual
tests (C3 co5 emp)
Insufficient recording of quality requirements.
(C3 co6 emp)

P6

Practice: Align
architecture
with
organization
arrangement

Include business goals in design (P6 co1 slr)

Base architectural decisions on available resources
(P6 co2 emp)

Establish quality management practices
(P6 co3 emp)

(P6 co3 emp) when aligning architecture and organization.

We recommend aligning architecture with organizational arrangement (P6)

– the processes, practices and resources – in addition to purely aligning it with570

the organizational structure. Our interviewees particularly highlight the need

to base decisions on available resources (P6 co2 emp) – here resources includes

the effort developers can put into their work, developer skills and technology

28



www.manaraa.com

experience, location of team members, access to hardware, and software licenses.

However, as demonstrated, changes in personnel (C1 co3 emp) will easily break575

this alignment, and thus the architecture should be flexible enough not to depend

on individuals with the potential of creating bottlenecks.

Design Process combines Project Management and the actual Design De-

cisions. Thus, while well-managed Practices from above will reflect well also

on lower-level concepts (as illustrated in our conceptual model in Figure 3 and580

the relationships in Figure 4), in this case Design Process will benefit when the

parts making up this high-level concept are in order. Concerns related to Design

Practices as detailed in P2 (Table 8) will further aid in aligning organization

and architecture, and concerns related to P3 (Table 10) and P5 (Table 7) will

help improve quality.585

5.2.2. Handling Architectural Knowledge Management

Architectural knowledge management (AKM) is a major challenge, as dis-

tance makes traditional communication difficult or even impossible. Demon-

strated in many ways, deficient AKM (C2) is quite often experienced by in-

terviewees. Proper knowledge management entails ensuring that all sites have590

access to documentation and that such documentation is understood (high-

lighted by concerns C2 co1 – C2 co6). There are often various documentation

repositories, wikis, and tools where documentation is added. However, in a dis-

tributed setting it easily becomes unclear who has access to these systems, who

accesses them, and when someone does access the documents, whether the sys-595

tem is structured so that documents can be found when needed. Further, when

projects are distributed, and thus project management is also distributed, com-

munication across project boundaries becomes more challenging (C2 co11 emp).

In modern software development it is common to rely on shared libraries and

components. Thus, when the maintenance responsibilities of such components600

are distributed across a variety of projects, and management of those projects,

in turn, is distributed across the globe, there is an increased threat that shared

libraries are not kept up to date or their ownership becomes unclear, leading to

29



www.manaraa.com

Table 6: Architectural Knowledge Management

ID Challenge/
Practice

Concerns

C2

Challenge:
Poor
architectural
knowledge
management
between sites

Difficulties in effective creation and sharing of ar-
chitectural artifacts (C2 co1 slr)
Difficulties in maintaining a common view of the
project (C2 co2 slr)
Inconsistent usage of electronic systems for knowl-
edge sharing due to preference of social networks
(C2 co3 slr)
Insufficient architectural documentation
(C2 co4 slr)
Insufficient documentation practices
(C2 co5 emp)
Insufficient knowledge management practices
between projects and across organization
(C2 co6 emp)
Disagreement in design choices (C2 co7 emp)
Problems recognizing and caused by conflicting as-
sumptions on software (C2 co8 emp)
Insufficient understanding of architectural deci-
sions in teams and other stakeholder groups (C2
co9 slr)
Incorrect assumptions made during design
(C2 co10 slr)
Communication issues due to distances
(C2 co11 emp)
Unclear ownership of architectural elements
(C2 co12 slr)

P1

Practice:
Communicate
architectural
decisions to all
stakeholders

Establish practices enhancing communication and
knowledge distribution (P1 co1 emp)
Architects should handle communication with
different stakeholders, considering stakeholders’
background (P1 co2 emp)
Communicate architectural artefacts and practices
clearly to all sites (P1 co3 slr)
Arrange collocated activities for architecture team
to promote awareness (P1 co4 slr)
Establish a team of architects for handling com-
munication between different stakeholders and
teams (P1 co5 slr)
Ensure understandable and accessible documenta-
tion for all parties (P1 co6 emp)
Maintain a single repository for architectural arte-
facts accessible to all (P1 co7 slr)

30



www.manaraa.com

a variety of problems when developers unnecessarily attempt to duplicate their

functionality (C2 co12 slr).605

Our empirical study draws attention to disagreement in design choices (C2 co7 emp),

which closely relates to insufficient understanding or incorrect assumptions on

said choices (C2 co8 emp, C2 co9 slr, C2 co10 slr). While disagreeing and rais-

ing issues about potential drawbacks of certain choices is a natural part of

architecting, the concern that was specifically highlighted in the distributed610

setting arose due to difficulties in communication and not having enough access

to knowledge. When there are limited possibilities for developers at remote sites

to attend meetings and discuss the design with the architect, they are less likely

to understand all the constraints and drivers behind the decisions, and thus,

they end up questioning the selected solutions.615

These challenges can be alleviated to some extent if architectural decisions

are communicated to all stakeholders (P1) – a practice that experienced ar-

chitects are no doubt aware of. However, our detailed concerns presented

may help architects notice gaps in how communication is handled. It is not

enough to simply put information out there, but those responsible for com-620

munication (P1 co5 slr) should also consider the stakeholders’ background and

adjust their method of communication accordingly (P1 co2 emp), ensuring that

documentation is not just available, but also understandable and accessible

(P1 co2 emp). In general, communication practices should not just exist to

allow communication, but should be designed in a way that enhances communi-625

cation (P1 co1 emp). This can include visiting remote sites and having common

fixed meetings.

Practices related to software development governance (P3, see Table 10)

may also aid in improving knowledge management. For example, we recom-

mend having a representative architect on each site and engaging developers in630

architectural work. Further, utilizing various modeling techniques as detailed

by P8 (see Table 8) may improve knowledge management via an increased level

of understanding, as stakeholders with different backgrounds may find some

diagrams more usable than others.

31



www.manaraa.com

Table 7: Shared Practices

ID Challenge/
Practice

Concerns

C4

Challenge:
Insufficiently
defined or lack
of conformance
to shared
practices across
sites

Inconsistent versioning (C4 co1 slr)
Insufficient interface specifications (C4 co2 slr)
Ignorance of or incorrect use of principles, rules
and guidelines for architectural design and knowl-
edge management (C4 co3 slr)
Lack of stability in architecture leads to difficul-
ties in applying design rules and dividing tasks
(C4 co4 slr)
A lack of conformance to architectural specifica-
tion (C4 co5 slr)

P5

Practice:
Standardize a
set of
architectural
practices across
locations

Ensure that teams develop code based on common
design agreements (P5 co1 slr)
Use common architectural practices and ensure
they are well-defined (P5 co2 slr)
Consider a service oriented approach (P5 co3 slr)
Take advantage of Agile methods (P5 co4 emp)
Use prototyping (P5 co5 slr)
Ensure fit to requirements (P5 co6 emp)

5.2.3. Ways of Working635

How to do and what kind of practices are established in design process and

development are defined in Ways of Working. In the GAP Framework we present

concerns related to insufficiently defined practices or how practices were followed

across sites (C4), which can be solved by using standardized set of practices

across sites (P5). Therefore, all those involved in architecting work should have640

a common agreement on what particular practices and drivers are applied in

design (P5 co1 slr). This is not a given in distributed projects. Furthermore, our

current study identified further practices to alleviate this concern, for example,

(P5 co6 emp). Architecture design stems from eliciting functional and non-

functional requirements, and creating the architecture to reflects these needs.645

However, if the design work is not well-coordinated, the original requirements

may fade into the background, resulting in compliance issues in the long run,

especially in a distributed setting (C4 co5 slr). This may be aided by utilizing

32



www.manaraa.com

Agile methods (P5 co4 emp) - handling a smaller set of requirements (or user

stories) at a given time. This allows the architect to quickly adjust development650

work in an unstable organization, and thus will aid handling compliance and

communication issues. It can also help to discover misunderstandings in a more

timely manner.

Ways of Working can be further improved by using solid design practices

particularly suitable for GSD (as detailed in P2, see Table 8), and by imple-655

menting software development governance (P3, see Table 10), which is essential

for Project Management, which in turn largely defines Ways of Working.

5.2.4. Architectural Design Decisions

When architectural design is itself distributed or needs to consider distri-

bution of subsequent development work, challenges identified relate to reach-660

ing viable decisions and handling dependencies (C5). In addition to the most

common concern of insufficient decoupling, as strongly stressed in the litera-

ture (C5 co1 slr), interviewees note how the complexity of the product brings

challenges to the architecture design (C5 co2 emp) regardless how the project

is organized. However, complexity is an even bigger risk if architecture work665

is spread over several sites, and a distributed team needs to gain a common

understanding of the solutions and choices to deal with the complexity.

While modularity and coupling were already identified as key concerns in the

Concern Framework (C5 co1 slr, C5 co5 slr), in our empirical study such con-

cerns were complemented by challenges faced by the interviewees: finding enti-670

ties in the architecture between which interfaces can be designed (C5 co3 emp),

and understanding and eliminating dependencies (C5 co4 emp). Modularity is

as big a concern in collocated projects as it is in distributed projects, but as task

allocation is critical for the success of distributed projects, and that, in turn,

is highly dependent on the modularity of the architecture, concerns related to675

modularity should be highlighted.

To address these challenges, we found several practical concerns related to

modularity and separation of concerns in the architecture (P2 co2 emp and

33



www.manaraa.com

Table 8: Architectural Design Decisions

ID Challenge/
Practice

Concerns

C5

Challenge:
Problems
associated with
architectural
design decision
and identifying
dependencies

Insufficient decoupling, cross-component features
(C5 co1 slr)
Challenges brought by the complexity of software
(C5 co2 emp)
Difficulties defining logical entities and finding in-
terface boundaries in architecture (C5 co3 emp)
Insufficient or no methods for identifying, under-
standing or preventing dependencies (between de-
cisions, components or other software artefacts)
within architecture (C5 co4 emp)
Inability to recognize dependencies between or cre-
ated by architectural decisions. (C5 co5 slr)
Lack of time and schedule pressures affect archi-
tectural decisions (C5 co6 emp)
A lack of compliance to the business process
(C5 co7 slr)

P2

Practice:
Apply
architectural
design practices
for global
software
development

Implement well-defined interfaces to increase mod-
ularization and aid loose coupling (P2 co1 slr)
Make interface design a priority (P2 co2 emp)
Ensure components that will be dispersed to dis-
tributed teams are loosely coupled or otherwise
plan component breakdown to independent mod-
ules based on distribution of teams (P2 co3 slr)
Strive for high modularity and separation of con-
cerns (P2 co4 emp)
Locate dependencies within architecture
(P2 co5 emp)

P7
Practice: Do
continuous
improvement

Do active research on new technologies and prac-
tices (P7 co1 emp)
Consider long-term effect of design choices
(P7 co2 emp)
Emphasize reuse (P7 co3 emp)

P8

Practice: Use
various
architecting
modeling
techniques

Use (call) graphs/matrices to depict and detect
coupling (P8 co1 slr)
Use visualization of decisions/metrics (P8 co2 slr)
Use collaborative modeling (P8 co3 slr)
Use a variety of diagrams promote awareness
(P8 co4 slr)
Don’t over-rely on UML diagrams (P8 co5 slr)

34



www.manaraa.com

P2 co4 emp) which are particularly relevant for the GSD context. Our intervie-

wees particularly stressed the importance of locating dependencies within the680

architecture (P2 co5 emp), recommending the utilization of checklists, illustra-

tions, tools and feature-based development. In a related practice concerning

continuous improvement (P7), the interviewees also stressed the possibility of

reuse (P7 co3 emp), which is also easier if the design is modular. Consider-

ing that the long-term effect of design choices (P7 co2 emp) stems from similar685

experiences – short-term choices may lead to difficult dependencies between

technologies that will be difficult to maintain. Finally, design can be aided by

utilizing various architecting modeling techniques or visualizations (P8) to help

share a common understanding of the decisions. (see Table 7).

5.2.5. Task Allocation690

Modular design is highly recommended for GSD, as task allocation is often

based on the assumption that modules or concerns are clearly separated and

decoupled. But, task allocation in a distributed setting (C6) easily becomes

challenging if dependencies between tasks and subsequently between teams are

not identified (C6 co6 slr). Due to communication difficulties there is often695

more effort and coordination required (C6 co1 slr, C6 co2 slr), while decreased

visibility to remote sites and what resources are truly available may lead to a

mismatch between tasks and resources (C6 co5 slr).

Additionally, while work items are, where possible, often kept separate be-

tween sites in a distributed setup, multiple sites may be developing large mod-700

ules which ultimately need to fit together for the final product. If one module

is delayed, integration will, in time, come to a halt (C6 co4 emp).

We recommend an architecture-based task allocation (P4) supported by the

literature (P4 co1 slr, P4 co2 slr, P4 co5 slr). Interviewees further raise the is-

sue of alignment. The architecture may act as a driver, and additional resources705

may be acquired to fulfill the needs of the designed architecture (P4 co3 emp).

Alignment between the organization and architecture can be used to allocate

tasks, ensuring that resources at a given site actually match the task given to

35



www.manaraa.com

Table 9: Task Allocation

ID Challenge/
Practice

Concerns

C6

Challenge:
Issues with task
allocation in a
distributed
setting

Increased amount of effort with modifications in-
volving several developers across different sites
(C6 co1 slr)
Increased needs for coordination when using ex-
perts from different sites (C6 co2 slr)
Difficulties evaluating work input due to distribu-
tion (C6 co3 emp)
Difficulties in synchronizing tasks (C6 co4 emp)
Insufficient matching of code to available resources
(C6 co5 slr)
Difficulties with correctly identifying dependencies
between work units and thus assigning work to
distributed teams (C6 co6 slr)
Insufficient prioritization rules (C6 co7 slr)

P4

Practice:
Implement
architecture-
based task
allocation in
global software
development

Identify where the domain expertise lies and allo-
cate tasks accordingly (P4 co1 slr)
Retain tightly coupled work items at one site
(P4 co2 slr)
Acquire and arrange resources based on architec-
ture (P4 co3 emp)
Base work allocation on available resources and
minimize need for communication between sites
(P4 co4 emp)
Let the architecture determine how tasks are al-
located, and who is responsible for each task
(P4 co5 slr)

them, and that communication between sites is minimized (P4 co4 emp).

5.2.6. Project Management710

Governance is an essential part of Project Management. Thus, there are

inevitable challenges if governance is lacking or processes are not being fol-

lowed (C7). Lack of governance may be observed when organization manage-

ment is not considered in the design process (C7 co2 slr) or in dividing tasks

(C7 co1 slr). We have also identified that knowledge management problems715

arise due to poor governance resulting in bottlenecks (C7 co7 slr) or in lack of

36



www.manaraa.com

Table 10: Governance and Processes

ID Challenge/
Practice

Concerns

C7

Challenge:
Lack of
governance and
compliance to
processes

Difficulties with making the organization report-
ing structure match the geographic distribution of
tasks (C7 co1 slr)
Overlooking organization management
(C7 co2 slr)
Challenges due to inconsistent standardization,
tools and equipment between sites (C7 co3 emp)
Schedule is prioritized over processes
(C7 co4 emp)
Challenges fitting practical work to defined pro-
cesses (C7 co5 emp)
Problems caused due to not involving a technical
architect (C7 co6 slr)
Impractical condensing of knowledge due to high
dependency on one lead architect (C7 co7 slr)

P3

Practice:
Implement
software
development
governance for
global software
development

Assign responsibilities for prioritization, manag-
ing architectural work and sharing knowledge to
teams (P3 co1 emp)
Break work items to easily manageable pieces
(consider one subsystem, can be handled by one
person) (P3 co2 slr)
Define clear responsibilities for architecture team
to handle changes that span through several com-
ponents and/or sites (P3 co3 slr)
Ensure each site has representative architect
(P3 co4 slr)
Engage developers across sites in architectural
work (P3 co5 emp)

expertise in design work (C7 co6 slr). Our interviewees also noted problems

related to inequality between sites (C7 co3 emp).

They further reported problems related to how processes are followed. In

some cases they were not able to follow the process as defined when they would720

have wanted to - this happened when tight schedules dictated that shortcuts

needed to be taken (C7 co4 emp). In a converse case, interviewees felt that the

defined process did not match practical development work (C7 co5 emp), and

37



www.manaraa.com

work needed to be done ”under the hood” to be able to do it efficiently.

One key concern is how to engage developers across sites in architectural725

work (P3 co5 emp). Engaging developers from various backgrounds and sites

will aid in condensing and sharing knowledge and finding expertise. Similar

benefits regarding knowledge management can be achieved by appointing people

and giving them clearly defined roles (P3 co1 emp).

Also note that while we did not particularly map any other Practices to730

C7, concerns related to the Decision Process may aid in addressing the afore-

mentioned issues. This particularly relates to organizational aspects, as demon-

strated by the relationship between Project Management and Design Process in

our conceptual model (Figure 3).

However, with project management issues we note a gap in how the found735

practice and the related concerns address concerns raised particularly by the

interviewees. We did not find particular concerns that would directly aid in

issues related to processes.

5.2.7. People Management

Table 11: Managing People and Soft Issues

ID Challenge/
Practice

Concerns

C8

Challenge:
Difficulties in
managing
people and
handling soft
issues

Lack of commitment to software development pro-
cesses and guidelines (C8 co1 emp)
Lack of commitment or interest in work items (dis-
tributed across sites) (C8 co2 emp)
Misaligned interests and undesirability of tasks
make task distribution challenging (C8 co3 slr)
Challenges in development work due to cultural
differences in getting things done and reporting
progress(C8 co4 emp)

Our interviewees experienced a lack of commitment in a variety of ways740

(C8 co1 emp, C8 co2 emp) for example, there was a lack of commitment to

executing the design and reporting progress (C8 co4 emp).

While we did not find direct Practices to address this Challenge, handling

38



www.manaraa.com

such soft issues is alleviated when concerns related to Project Management

and Decision Process are well-handled, as shown in our conceptual model. In745

particular, P3 (Implement software development governance for GSD) contains

one concern which encourages engaging developers across sites (P3 co5 emp).

While this relates to governance, the reason why interviewees gave this particu-

lar recommendation is strongly linked to commitment and motivation – giving

a feeling of responsibility.750

6. Discussion

6.1. Architecting in GSD

The motivation for conducting the empirical study presented in this paper

was to broaden our understanding of architectural design methods as applied in

distributed software development. While the Concern Framework we developed755

[19] illustrated general problem areas and lessons learned, we were uncertain

as to the completeness or consistency of our results. Conducting this follow-

on study has enabled us to identify further challenges and practices from the

practitioner’s perspective, resulting in a holistic view as presented in the GAP

Framework. A recurring theme across our group of interviewees was the diffi-760

culties they, as architects, experienced when teams deviated from the defined

development process and architectural plans. This divergence in the distributed

setting happened too regularly, mainly because the development process was

unclear, or because the teams took a different view.

Most interviewees stated their process was ”Scrum-ish” - the idea was to use765

Scrum, but the process did not go by the book. This hybrid approach is fairly

typical according to a recent large scale study of Agile adoption in GSD [44].

While a hybrid software development process might be what is commonly used,

in the case of architecture compliance across teams, a mixed and possibly vague

process is causing conflicting views of the architectural design.770

The recommendation is for the choice of practice to be based on a com-

mon denominator: agreement across all stakeholders. This includes agreeing

39



www.manaraa.com

on management practices and collaboration, common design principles, roles

for different tasks and making sure that the organization and architecture are

aligned. When development is distributed, applying commonly agreed princi-775

ples and loose coupling clearly helps, as there is less need to explain choices to

remote sites, and the tasks can be more clearly separated.

Misalignment between organization structure and the software architecture

is a big challenge. The environment in a distributed setting can change quickly

and regularly, and can result in organizational instability. If Conway’s law is780

being observed, the tendency is for the architecture to be based around the

organizational structure. How can the architecture remain stable if this is the

case? With the organization continually changing. Therefore, keeping pace with

changes is particularly challenging for those responsible for the architecture.

We have identified that the architecture and organization need, in this case, to785

continually evolve over time, but the architect is continually playing a kind of

‘catch-up’.

There are similar challenges regarding communication and knowledge man-

agement. Architects need to be aware of how much these are due to differences

in both working and ethnic culture. Interviewees reported the frustration they790

had with some practitioners hiding bad news (known as the ‘mum effect’). This

might be down to cultural differences, where in some cultures giving a good

impression overrides flagging a problem [45]. Yet handled correctly a cultural

mix can enhance development with a rich range of perspectives [6].

Further, while the use of well-defined interfaces is recommended e.g. Pereira795

et al. [46] and Clerc et al. [47], we have noted that there are issues with

the development of well-defined interfaces in the distributed organization and

finding the correct boundaries for such interfaces is sometimes very challenging.

Overall, due to the distribution of software development, we have noted new

architectural design concerns that have emerged within our study. In addition,800

such concerns became exaggerated due to the distributed nature of software

development. When tasks are distributed, it is critical for the architect to

recognise these difficulties, and the GAP Framework presented will support

40



www.manaraa.com

them in doing so.

6.2. Threats to Validity805

We will consider threats to validity as described by Wohlin [48] and cover

the points which are relevant to our study.

6.2.1. Conclusion Validity

Conclusion validity concerns the correctness of conclusions drawn. Searching

for specific results, i.e., fishing, is a threat which may occur in interviews that810

are poorly designed, or in which participants are chosen to bias the results. The

interview questions were drafted in a way that they allowed very broad and thus

varied answers. We also only selected interviewees solely based on their expertise

and we had no prior knowledge as to how they would consider the questions or

what their attitude would be towards the topic. Finally, we need to consider815

the threats posed by having the GAP Framework validated by authors only. We

performed our analysis so that one author produced an initial framework, and

two other authors validated it by mapping quotes to themes. The validating

authors were given the quotes and themes separately and independently, and no

indication was given of how the first author had done her initial mapping. We820

required 100% agreement in mapping to proceed. While this type of approach

is common and similar to content analysis, we acknowledge there is a small risk

of author bias. However, our study was an exploratory one, and as we did not

expect any particular results, no author was set on a specific theme, either.

To alleviate the threats related to reliability of treatment implementation,825

the same interview protocol was followed for all interviewees. The only dif-

ference was that two interviews were conducted via Skype, while others were

done in person. However, with the Skype interviews video connection was also

included to make it as personal as possible. Small connection problems might

have affected the experience from the interviewees’ viewpoint, though. These830

are also the only occurrences of Random irrelevancies in experimental setting,

41



www.manaraa.com

which may have affected the interviewees’ attitude and thus the way questions

were answered.

6.2.2. Internal Validity

Internal validity threats are influences that may affect the variables with835

respect to causality. They can be sorted into three categories: single group

threats, multiple group threats and social threats. The ones applicable to our

experiment are single group threats.

There is a risk related to maturation, i.e., that subjects react differently as

time passes. Some of the interviews took over two hours of time, and it could840

be seen that some interviewees were getting tired at the end of the interviews.

However, we had designed the interview protocol so that the most broad and

difficult questions were in the beginning, and in the end were quite straightfor-

ward and simple questions, which should alleviate this threat. The design of

the interview protocol is also an Instrumentation related threat, and has been845

already discussed in relation to Fishing.

6.2.3. Construct Validity

Construct validity concerns how well the results are generalizable to the

concept or theory behind the experiment. Threats include, e.g., mono-method

bias, inadequate preoperational explication of constructs and hypothesis guessing850

[49]. It is natural to assume that the participants had a pre-defined view of

especially the challenges we were looking for, and could perform hypothesis

guessing. However, in our case, there were no ”right” or ”wrong” answers, and

thus ”correct” guessing of the hypothesis would not have benefited us in any

way. Further, we could observe that the answers often would initially deal with855

managerial issues. To undercover practical architecting challenges and practices

follow-up questions were almost always required.

6.2.4. External Validity

External validity, in turn, concerns how well the results are generalizable

to industrial practice. As this study was conducted with a cross-section of860

42



www.manaraa.com

practitioners currently working in the industry, we are moving closer to being

able to generalize the results to other GSD organizations. However, given the

relatively small sample, we cannot be too confident that every practice we list

will apply to every context. For example, even within our small sample we could

see how the applicability of practices depend on the kind of system that is under865

design and what kind of processes have been defined.

7. Conclusions

In the study presented in this paper, we collected detailed information relat-

ing to architectural design for GSD. Through several interviews with architects

(all operating in a distributed environment) we gained visibility into the kind of870

challenges that they encountered in their day-to-day activities. These challenges

include how they design and allocate tasks across their multi-site teams. We

also asked interviewees how they tried to resolve the challenges. In this way,

we developed the GSD Architectural Practice Framework, augmenting our pre-

viously developed Concern Framework with more detailed context, challenges875

and practices [19].

The challenges for the GSD architect are manifold. While we knew about

the challenges in trying to match the architecture to the organizational struc-

ture, and this was given as a recommendation, we now understand more about

why this is difficult to achieve in GSD. The structure is shown to be continually880

changing, and is unstable. Therefore, there are suggestions that the architec-

ture should be independent of the structure, so that all stakeholders have a

clear understanding of how tasks are allocated, or that the architecture should

align with the structure (through modularity). Further, our study suggests

that striving for alignment, our companies actually work both in line with and885

against Conway’s law - the organization and the architecture end up mirroring

each other through an evolutionary process, where both dynamically change

to adapt to the structures of the other. To successfully implement such a dy-

namically evolving architecture, struggling to adapt to organizational changes,

43



www.manaraa.com

the organization needs an architect with a clear vision and a firm grasp of the890

original requirements.

This paper’s main contribution is to elaborate the dependencies associated

with the architect’s role, particularly the architect’s role in task allocation in

a global setting. The architect does not work autonomously since design de-

cisions are strongly influenced by project management practices. We observed895

that in some companies one architect is responsible for the overall design de-

cisions, whereas in other cases it would be a group decision (with a team of

architects). Although all participants applied Agile methodologies, there were

pros and cons. For example, on the positive side interviewees found Scrum cer-

emonies supported improved communication across sites as wrongful assump-900

tions could be detected earlier. However, in some cases the expectation that

teams are self-organizing and are responsible for the day to day development,

made it challenging to impose architectural decisions from outside the team -

something that is often necessary when part of a larger project involving many

teams and sites. Going back to handling a dynamic architecture in an unsta-905

ble environment, leaving too many decisions to self-organizing teams in such

an environment may very easily lead to an architecture that is no longer in

compliance with requirements, if there is no clear ownership. Visibility across

sites, teams and the lifespan of the product is also required to make a truly

optimal task allocation and architecture plan, as one of our key results is that910

development of certain components are preferably allocated to those who will

also be maintaining those components – if maintainability is a significant quality

requirement or there is expected to be a high level of reuse of the components.

The dependencies in our newly derived GSD Architectural Practice Frame-

work (GAP) further illustrate the complex inter-relationships of challenges to915

practices and the holistic nature of architectural design in GSD, where the

recommendation is to consider applying these GSD architectural practices to

achieve a desired balance.

44



www.manaraa.com

8. Acknowledgements

The work of the first author was supported by the Academy of Finland.920

This work was partially supported (second and third author) with the financial

support of the Science Foundation Ireland grant 13/RC/2094 and co-funded un-

der the European Regional Development Fund through the Southern & Eastern

Regional Operational Programme to Lero – the Irish Software Research Centre

(www.lero.ie).925

References

References

[1] S. Sahay, B. Nicholson, S. Krishna, Global IT Outsourcing: Software De-

velopment Across Borders, Cambridge University Press, 2003.

[2] J. Noll, S. Beecham, I. Richardson, C. NicCanna, A global teaming model930

for global software development governance: A case study, in: Proceedings

of the 11th IEEE International Conference on Global Software Engineering

(ICGSE), IEEE, 2016, pp. 179–188.

[3] D. Šmite, C. Wohlin, Z. Galvina, R. Prikladnicki, An empirically based ter-

minology and taxonomy for global software engineering, Empirical Software935

Engineering 19 (1) (2014) 105–153.

[4] P. J. Ågerfalk, B. Fitzgerald, H. H. Olsson, E. Ó. Conchúir, Benefits of

global software development: the known and unknown, in: Proceedings of

ICSP ’08, Vol. 5007, Springer, 2008, pp. 1–9.

[5] J. D. Herbsleb, A. Mockus, T. A. Finholt, R. E. Grinter, An empirical940

study of global software development: distance and speed, in: Proceedings

of ICSE 2001, 2001, pp. 81–90.

[6] S. Deshpande, I. Richardson, V. Casey, S. Beecham, Culture in global

software development-a weakness or strength?, in: Proc of the 5th IEEE

45



www.manaraa.com

International Conference on Global Software Engineering, IEEE, 2010, pp.945

67–76.

[7] P. Ågerfalk, B. Fitzgerald, H. Holmstrom, B. Lings, B. Lundell, E. Ó.

Conchuir, A framework for considering opportunities and threats in dis-

tributed software development, in: Proceedings of the International Work-

shop on Distributed Software Development, Austrian Computer Society,950

2005, pp. 47–61.

[8] J. Noll, S. Beecham, I. Richardson, Global software development and col-

laboration: barriers and solutions, ACM Inroads 1 (3) (2011) 66–78.

[9] A. Avritzer, D. Paulish, Y. Cai, K. Sethi, Coordination implications of

software architecture in a global software development project, J. Syst.955

Software 83 (10) (2010) 1881–1895.

[10] P. Ovaska, M. Rossi, P. Marttiin, Architecture as a coordination tool in

multi-site software development, Software Process: Improvement and Prac-

tice 8 (4) (2003) 233–247.

[11] J. D. Herbsleb, Global software engineering: the future of socio-technical960

coordination, in: Proceedings of the Future of Software Engineering (FOSE

’07), 2007, pp. 188–198.

[12] M. Conway, How do committees invent?, Datamation 14 (4) (1968) 28–31.

[13] A. M. D. Santana, F. Q. B. da Silva, R. C. G. de Miranda, A. A. Mascaro,

T. B. Gouveia, C. v. F: Monteiro, A. L. M. Santos, Relationships between965

communication structure and software architecture: An empirical inves-

tigation of the conway’s law at the federal university of pernambuco, in:

Proceedings of the 3rd International Workshop on Replication in Empirical

Software Engineering Research (RESER), IEEE, 2013, pp. 34–42.

[14] M. Bano, D. Zowghi, N. Sarkissian, Empirical study of communication970

structures and barriers in geographically distributed teams., IET Software

10 (5) (2016) 147–153.

46



www.manaraa.com

[15] S. Imtiaz, N. Ikram, Dynamics of task allocation in global software devel-

opment, J. Softw. Evol. and Proc. (2017) 29. doi:10.1002/smr.1832.

[16] M. Babar, C. Lescher, Global software engineering: Identifying challenges is975

important and providing solutions is even better, Information and Software

Technology 56 (1) (2014) 1–5.

[17] N. Ali, S. Beecham, I. Mistrik, ‘Architectural knowledge management in

global software development: A review, in: Proceedings of 5th IEEE Con-

ference on Global Software Engineering (ICGSE), IEEE, 2010, pp. 347–352.980

[18] S. S. M. Fauzi, P. L. Bannerman, M. Staples, Software configuration man-

agement in global software development: A systematic map, in: Proceed-

ings of the 2010 Asia Pacific Software Engineering Conference, 2010, pp.

404–413.

[19] O. Sievi-Korte, S. Beecham, I. Richardson, Challenges and recommended985

practices for software architecting in global software development, In-

formation and Software Technology 106 (2019) 234 – 253. doi:https:

//doi.org/10.1016/j.infsof.2018.10.008.

[20] A. Mishra, D. Mishra, Software architecture in distributed software de-

velopment: A review, in: Proceedings of OTM 2013: On the Move to990

Meaningful Internet Systems: OTM 2013 Workshops, Vol. 8186, Springer

Berlin Heidelberg, 2013, pp. 284–291.

[21] V. Clerc, P. Lago, H. van Vliet, Architectural knowledge management

practices in agile global software development, in: Proceedings of the 4th

IEEE International Conference on Global Software Engineering Workshop995

(ICGSEW’11), 2011, pp. 1–8.

[22] V. Clerc, Do architectural knowledge product measures make a difference

in GSD?, in: Proceedings of the 4th IEEE International Conference on

Global Software Engineering (ICGSE), 2009, pp. 382–387.

47



www.manaraa.com

[23] M. A. Babar, R. C. de Boer, T. Dingsøyr, R. Farenhorst, Architectural1000

knowledge management strategies: Approaches in research and industry,

in: Proceedings of Second ICSE Workshop on SHAring and Reusing Ar-

chitectural Knowledge - Architecture, Rationale, and Design Intent 2007

(SHARK ADI 2007), 2007, p. 35.

[24] G. Borrego, A. Morá, R. Palacio, O.M.Rodriguez, Understanding archi-1005

tectural knowledge sharing in AGSD teams: an empirical study, in: Pro-

ceedings of the 11th IEEE International Conference on Global Software

Engineering (ICGSE), 2016, pp. 109–118.

[25] H. R. de Faria, G. Adler, Architecture-centric global software processes, in:

Proceedings of the 1st IEEE International Conference on Global Software1010

Engineering (ICGSE), 2006, pp. 241–242.

[26] F. Salger, Software architecture evaluation in global software development

projects, in: Proceedings of OTM 2009: On the Move to Meaningful Inter-

net Systems, Springer Berlin Heidelberg, 2009, pp. 391–400.

[27] M. Babar, A framework for groupware-supported software architecture1015

evaluation process in global software development, J. Softw. Evol. and Proc.

24 (2012) 207–229.

[28] M. Babar, A framework for supporting the software architecture evaluation

process in global software development., in: Proceedings of the 4th IEEE

International Conference on Global Software Engineering (ICGSE), 2009,1020

pp. 93–102.

[29] M. Che, D.E.Perry, Evaluating architectural design decision paradigms in

global software development, International Journal on Software Engineer-

ing and Knowledge management 25 (2015) 1677–1692.

[30] M. Bass, V. Mikulovic, L. Bass, H. James, C. Marcelo, Architectural1025

misalignment: An experience report, in: Proceedings of The Working

48



www.manaraa.com

IEEE/IFIP Conference on Software Architecture WICSA’07, 2007, pp. 17–

17.

[31] R. B. Svensson, A. Aurum, B. Paech, T. Grschek, D. Sharma, Software

architecture as a means of communication in a globally distributed software1030

development context, in: Proceedings of the International Conference on

Product Focused Software Process Improvement (PROFES 2012), Springer

Berlin Heidelberg, 2012, pp. 175–189.

[32] S. Betz, D. ŠMite, S. Fricker, A. Moss, W. Afzal, M. Svahnberg, C. Wohlin,

J. Borstler, T. Gorschek, An evolutionary perspective on socio-technical1035

congruence: The rubber band effect, in: Proceedings of 3rd Interna-

tional Workshop on Replication in Empirical Software Engineering Re-

search (RESER), 2013, pp. 15–24.

[33] J. Bosch, P. Bosch-Sijtsema, Coordination Between Global Agile Teams:

From Process to Architecture, Springer Berlin Heidelberg, 2010, pp. 217–1040

233.

[34] J. Herbsleb, R. E. Grinter, Architectures, coordination, and distance: Con-

way’s law and beyond, IEEE Software 16 (5) (1999) 63–70.

[35] D. L. Parnas, P. C. Clements, D. M. Weiss, The modular structure of

complex systems, IEEE Trans. Software Eng 11 (3) (1985) 259–266.1045

[36] J. M. Verner, O. P. Brereton, B. A. Kitchenham, M. Turner, M. Niazi,

Systematic literature reviews in global software development: A tertiary

study, in: Proceedings of EASE’12, 2012, pp. 2–11.

[37] C. Ebert, M. Kuhrmann, R. Prikladnicki, Global software engineering:

Evolution and trends, in: Proceedings of the 11th IEEE International1050

Conference on Global Software Engineering (ICGSE), 2016, pp. 144–153.

doi:10.1109/ICGSE.2016.19.

[38] O. Sievi-Korte, I. Richardson, S. Beecham, Protocol for an empirical study

on software architecture design in global software development, lero techni-

49



www.manaraa.com

cal report no. tr 2019 01, https://www.lero.ie/sites/default/files/1055

TR_2019_01_Protocol_for_GSD_Arch_Design_Framework.pdf (2019).

[39] D. Cruzes, T. Dyba, Research synthesis in software engineering: a tertiary

study, Information and Software Technology 53 (2011) 440–455.

[40] V. Braun, V. Clarke, Using thematic analysis in psychology, Qualitative

Research in Psychology 3 (2) (2006) 77–101.1060

[41] M. Dixon-Woods, S. Agarwal, B. Young, A. Sutton, Synthesising qualita-

tive and quantitative evidence: a review of possible methods, Journal of

Health Services Reseach&Policy 10 (2005) 45–53.

[42] M. Burks, Y. Chapman, K. Francis, Memoing in qualitative research: Prob-

ing data and processes” (2008), Journal of Research in Nursing.1065

[43] K. Charmaz, Constructing Grounded Theory – A Practical Guide through

Qualitative Analysis, SAGE Publications, 2006.

[44] M. Marinho, J. Noll, I. Richardson, S. Beecham, Plan-driven approaches

are alive and kicking in agile global software development, in: Proceed-

ings of the ACM/IEEE International Symposium on Empirical Software1070

Engineering and Measurement (ESEM), 2019, p. ”to appear”.

[45] M. J. Monasor, A. Vizcáıno, M. Piattini, Cultural and linguistic problems

in GSD: a simulator to train engineers in these issues, Journal of Software:

Evolution and Process 24 (6) (2012) 707–717.

[46] T. A. B. Pereira, V. S. dos Santos, B. L. Ribeiro, G. Elias, A recommenda-1075

tion framework for allocating global software teams in software product line

projects, in: Proc of the 2nd International Workshop on Recommendation

Systems for Software Engineering, ACM, 2010, pp. 36–40.

[47] V. Clerc, P. Lago, H. van Vliet, Global software development: Are ar-

chitectural rules the answer?, in: Proceedings of 2nd IEEE International1080

Conference on Global Software Engineering (ICGSE), 2007, pp. 225–234.

50



www.manaraa.com

[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in Software Engineering: An Introduction, Kluwer Aca-

demic Publishers, Norwell, MA, USA, 2000.

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,1085

A. Wesslén, Experimentation in Software Engineering, Springer-Verlag,

Berlin-Heidelberg, Germany, 2012.

51



www.manaraa.com

Dr. Outi Sievi-Korte is an Assistant Professor (tenure track) in Software Engineering at Tampere 

University, Finland. She joined then Tampere University of Technology at the start of 2009 to conduct 

her PhD thesis research on using meta-heuristics for optimized and automated software architecture 

design. She has since defended her dissertation in 2011, and received a Post-Doctoral Researcher grant 

from the Academy of Finland in 2014 for research in the field of global software development. Her 

research interests lie with data-driven software development, utilizing AI and meta-heuristics for software 

engineering problems, software design, software project management, and social aspects of software 

development. She has published nearly 30 peer-reviewed papers in software engineering. She is member 

of the board at Finnish Society for Computer Science since 2018, has attended program committees for 

many conferences, including the International Conference on Software Engineering: Software 

Engineering Education and Training track (2019), and co-chaired the Symposium for Programming 

Languages and Tools (2015). 

 

Prof Ita Richardson is a Co-Principal Investigator in Lero and an Associate Professor in the Department 

of Computer Science and Information Systems at the University of Limerick. She leads the Process 

Quality Research Group, supervising projects on Global Software Engineering and Connected Health. 

She has over 200 publications, has supervised 15 PhD students to completion and is currently supervising 

6 PhD students. Prof Richardson is an SFI Industry Research Fellow (2015-2017). She has received 

funding for her research from a variety of agencies including Science Foundation Ireland, Irish Research 

Council, European Union and Enterprise Ireland. Prof Richardson is UL’s Athena SWAN champion, 

working at a national level for gender equality in science, technology, engineering and mathematics. She 

collaborates with a number of industries including IBM and Ocuco, and public bodies such as the Health 

Service Executive. She is on the editorial board of the Journal of Software: Evolution and Process, and 

serves on many conference programme committees including the International Conference on Software 

Engineering 2018 and the International Conference on Global Software Engineering over many years. 

Prof Richardson is guest editor of Journal of Software: Evolution and Process on Connected Health 

(2017), Journal of Software: Evolution and Process on Software Processes (2015), Expert Systems 

Journal on Knowledge Engineering in Global Software Development (2014), Journal of Software: 

Evolution and Process on Global Software Engineering (2012) and IEEE Software on Software Process 

for Small Enterprises (2007). 

 

Dr Sarah Beecham is a Senior Research Fellow in Lero (https://www.lero.ie) the Irish Software 

Research Centre at the University of Limerick. Sarah joined Lero in 2009, to conduct research into 

software quality and process improvement. Her wider interests are in socio-technical aspects of software 



www.manaraa.com

engineering to include Software Engineer motivation, agile methods, distributed software development, 

and how technology influences the lives of the older adult. She works closely with industry, where her 

research is problem driven. She is also interested in the education of the next generation of software 

engineers.  She has published over 60 peer reviewed papers in software engineering. 

In her empirical research, Sarah employs both qualitative and quantitative methods. She has supervised 

and examined several national and international PhD students and has three students currently in the 

pipeline.  Sarah sits on many Program Committees, has been general Chair for the Evidence and 

Assessment in Software Engineering conference (EASE), and was Co-chair for The Education and 

Training Track and ICSE (the premier International Conference in Software Engineering) in 2019, and is 

an associate editor for the Journal of Systems and Software. 

 


